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Investigation of the stability of fluid flows in plane pipes [1] is usually associated with the
investigation of the behavior, in time, of an infinite periodic wave of the form ¢ (y) exp i

tkx = @t} where k is real, The relation between @ and k is found from the condition of ex»
istence of a nontrivial solution of a boundary value problem for ¢ {y} and is defined by a
multivalued analytic function & (@). It was shown in [1 and 2| that the function & () has
only one branch &, (w) giving real values of k¥ when Im @ > 0, This branch corresponds to
the perturbations propagating downstream. Earlier [3] the author computed the function ky
(w) for real @ for the case of flows of an incompressible fluid at large Reynolds’ numbers.
It is easily seen that the behavior of k(@) will not be greatly altered when the fluid is com-
pressible, provided that its compressibility is sufficiently amall.

The condition of instability of the flow in a pipe of large but finite leugth, can be reduced
to the fact[3 and 4] that Eq.

Im [k (@) — kg (@)] =0 )
has solutions @ when Im @ > 0, The expression k.(w) in (1) will, for the time being, denote
the branch bf & (@)} defining the wave number of some perturbation propagating upstream. We
shall show that in the case of weakly compressible flows with high Reynolds numbers the
above condition of instability holds, provided that the branch corresponding to acoustic os=
cillations propagating upstream is taken as k(w).

I, either the flnid is compressible or the pipe walls are elastic, then acoustic or Zhukove
skif waves may be set up and propagate along it. Their wavelength will, for the given fre-
quency, be inversely proportional to the compresaibility of the fluid and the walls. When the
wavelength becomes large, we can neglect the tranaverse velocity and pressure gradient
components., Excess pressure at some cross section will be proportional to the excess of
mass per unit length of the pipe, so that
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where k, and @ are the wave number and frequency of the given wave, pq is the density of
the fluid, o is the velocity of propagation of the perturbations and u is the longitudinal com~
ponent of the velocity perturbation. In deriving (2), we have assumed that w/k > u.

Function u(y) satisfies Eq.
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where R is the Reynolds® number. Let us normalize uly) so, that
. 1
5 \ wdy =1 “)

Then the solution of (3) satisfying the zero boundary conditions can be written as

_atkg? [i ch V="ioR y]

e T o V= ioR ®
Inserting (5) into (4), we obtain the following expression relating w and &,
a%k,? 1 —
= [1—V_imnth]f-—:mﬂ]=! ()]

Since acoustic waves decay in a viscous fluid (see Eq. (7) below), we find that when
Im @ > 0, then the inequality Im k&, < 0 should hold for the wave propagating upstream. We
know [1 and 3] that the values of & lying on the upper complex semisplane for which Im k,
(w) < 0, vary with increasing R in such a manner, that WR + o0 as R - co. Therefore, at high
values of R it is sufficient to consider Eqs. (1) and (6) only for those values of w, for
which @R > 1, Then (6) yields the following relation for a wave moving upstream

LI
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where we take the arithmetic branch of the root, contained in —7/2< argw < 37 /2.

When a - 0o, © is arbitrary and Im w > 0, k, + 0 and approaches the point k = 0 from the
lower semi-plane. Therefore, at sufficiently large values of a and R, Eq. (1) has roots w in
the upper semi-plane and the flow is unstable.

Eq. (1) used to establish the natural frequencies of perturbations in the pipe, assumes
for an incompressible fluid the limit form

Imk, (@) =0 (8}

The latter coincides with the equation for'the complex frequency of an infinite periodic
wave. This equation together with the inequality Im @ > 0 is usually employed [1] as the
criterion of instability of the flow in an infinite pipe. It should however be noted, that in the
case of an incompressible fluid, the existence of the branch k,{w) = 0 is not sufficient to
justify writing (1) in the form of (8) directly, without putting a -+ 0o, This is caused by the
fact that the G.I. Petrovskii condition postulated by the author in the derivation of (1) in

4], is not valid in the case of an incompreasible fluid. (Petrovskii condition states, that
Im &k # 0 if Im @ is sufficiently large for all perturbations, and it ensures the correctness of
the statement of the Cauchy's problem).

We also note that the solutions ¢ (y) of the Orr-Sommerfeld equation corresponding to the
branch k, {©) = 0 cannot be assumed to be eigenfunctions, since they only need to satisfy
the condition ¢ “(1 1)= 0 on each wall, and the condition of impermeability k¥ (1 1)=0
does not restrict ¢ in any way.

From (4) it follows that the perturbations corresponding to k,{w) are related to the rate
of chaoge of the flow of fluid, and the latter becomes independent of x when g = 0o,

In the case when the boundary conditions at the ends of the pipe exclude the possibility
of altering the rate of flow or, when the acoustic wave and the wave corresponding to kl(m)
cannot generate each other by reflection from the pipe ends (e.g. doe to the difference in
symmetry, since the corresponding stream functions in y are even and odd respectively), then
the branch k ,(w) needs not be considered and can be replaced in (1) with another branch of
k(w) corresponding to the perturbations moving upstream, Such an equation was studied in
[3] for an incompreasible fluid and we showed that at high Reynolds® numbers it has no
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solutions @ in the upper semi-plane, i.e. under the given conditions, flows with fixed rate
of flow are not globally [ 4] unstable.

When the pipe is of infinite length and the Reynolds’ number is sufficiently high, the
instability of the flow is removable, so that if the initial perturbation is bounded in space,
then for ¢+ oo, the perturbations tend to zero at any fixed point 5], Thus, ends of the pipe
which may alter the rate of flow destabilize the flow of a weakly compressible fluid, and at
high R this leads to instability, On the other hand, flows which maintain the constant rate,
remain stable.
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